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Using a ne twork  mode l  fo r  concen t ra ted  p o l y m e r  solutions,  an expres s ion  is ca lcula ted  for  the 
s t r e s s  t e n s o r ,  defined in t e r m s  of the m o m e n t s  of the dis tr ibut ion function and the kinetic 
equation fo r  these  m om en t s .  In the l imi t ing  case  the r e su l t s  obtained coincide with known r e -  
su l t s  fo r  n o r m a l  Newtonian liquids. 

The b a s i c  p r o b l e m  in desc r ib ing  the mot ion of non-Newtonian liquids, including concent ra ted  p o l y m e r  
solut ions,  cons i s t s  in fo rming  the rheologica l  re la t ionship  re la t ing  the s t r e s s e d  s ta te  of the med ium to i t s  
de fo rmat ion  c h a r a c t e r i s t i c s .  

F o r  weakly  concen t ra ted  p o l y m e r  solut ions (at  concent ra t ions  c _< 0.01% by weight) this p r o b l e m  has  
been  solved comple te ly  in the l i t e r a t u r e  ( see ,  fo r  example ,  [1, 2]). For  solut ions with med ium and high con- 
cen t ra t ions  (c _> 1%) the p r o b l e m  r e m a i n s  unc lea r  to a s ignif icant  degree .  With growth in p o l y m e r  solution 
concent ra t ion  the m a c r o m o l e c u l e s  lose  t he i r  individuali ty;  the i r  react ion  to externa l  pe r tu rba t ions  takes  on 
an e v e r  m o r e  complex  c h a r a c t e r .  

In con t r a s t  to the phenomenologica l  app roach  widely employed  in the rheology of p o l y m e r  s y s t e m s ,  the 
p r e s e n t  study will  fo rmula te  a rheologica l  re la t ionship  for  concent ra ted  p o l y m e r  solutions f rom the mo lecu -  
l a r - k i n e t i c  posi t ion.  

We will  f i r s t  d e s c r i b e  the model  used  for  a concen t ra ted  solution of a h igh -molecu la r -we igh t  p o l y m e r  in 
a l o w - m o l e c u l a r - w e i g h t  solvent.  

In weakly  concen t ra ted  p o l y m e r  solutions in a s ta te  of t he rmodynamic  equi l ibr ium,  the m a c r o m o l e c u l e  
chains f o r m  low-dens i ty  en tanglements  with an effect ive  rad ius  on the o r d e r  of 10-4-10 -5 cm [1] and a r e  so 
d i s soc ia ted  that  t he i r  mutual  in te rac t ion  is  negligibly smal l .  With growth in concentra t ion of the po ly mer ,  
these  s e p a r a t e d  en tang lements  accumula te  and impinge upon each  other ,  fo rming  phys ica l  in t e rmesh ings  and 
engagements .  Due to the act ion of i n t e r m o l e c u l a r  fo rces  at  contact  points  labile  bonds a r e  formed,  c rea t ing  
a homogeneous  s y s t e m  fill ing the en t i r e  vo lume [3]. We a s s u m e  that  because  of the low density of the m a c r o -  
molecu le  s egmen t s  p e r  unit vo lume the s t ruc tu r a l  node points  a re  f o rmed  p r i m a r i l y  by four  subchains,  con-  
taining two m a c r o m o l e c u l e s  each. We will  t e r m  the d is tance  f rom node to node the subchain (Fig. 1). The 
subchains  cons i s t  of segments ,  the bas i c  k inemat ic  units of  the s t ruc tu ra l  network.  The number  of  such seg-  
men t s  S p e r  unit vo lume will  s e r v e  as  an effect ive  p a r a m e t e r  of the network model.  

In the p r o c e s s  of i s o t h e r m a l ,  homogeneous ,  and i n c o m p r e s s i b l e  t r a n s v e r s e  flow the network de fo rms ,  
the subchains  a r e  o r i en ted  along flow l ines  and s t r e t ched  e las t ica l ly ,  while the s t r e s s e s  developed in the sub- 
chains  a r e  concen t ra ted  in the weakes t  p a r t s  of the network - the node points .  In o r d e r  to avoid considera t ion 
of the complex  k ine t ics  of the p r o c e s s  of node format ion  and des t ruc t ion  under  the influence of these  s t r e s s e s ,  
we a s s u m e  that  the c h a r a c t e r i s t i c  l i f e t imes  of these  nodes a r e  all  the s a m e  and much  g r e a t e r  than the c h a r a c -  
t e r i s t i c  flow t ime.  

To de r ive  the rheologica l  re la t ionship  we will  ini t ial ly cons ider  a mode l  of a f r ee ly  p e r m e a b l e  s t r u c -  
t u ra l  ne twork  with f r ee ly  a r t i cu la t ed  segments .  The assumpt ion  of f r ee  network p e r m e a b i l i t y  e l imina tes  the 
effect  of  one node upon ano ther  through the  solvent,  while  the assumpt ion  of f r ee ly  a r t i cu la ted  segments  a l -  
lows us  to r e g a r d  the in te rac t ion  of the l a t t e r  with the solvent  as  occu r r ing  because  of format ion  of network 
nodes with an ef fect ive  coeff icient  of  f r ic t ion  ~ ~ 12~ahS, where  a is  the effect ive node radius  and ~ is  the 
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Fig. 1 

viscosity of the medium. In the expression for ~ it is assumed that in an effective network friction node 
there are as many segments (with Stokes friction) as there are in two subchains. 

We choose an arbitrary node and locate a corresponding coordinate system such that its origin coin- 
cides with the center of mass of the four nodes neighboring the given one (averaged over Brownian motion) 
(see Fig. 1). We will now consider the basic forces acting upon the chosen node in the flow process [2, 4]: 
1) hydrodynamic resistance of the node to the solvent; 2) an elastic force, since the nodes are elastically 
bonded to the freely articulated segments; 3) an effective diffusion force, produced by Brownian motion of 
the nodes. We assume that the hydrodynamic resistance force is proportional to the node's velocity with re- 
spect to the medium in unit volume: 

where xi = [Oxi(t)]/(Ot) is the mean node velocity; x i and xj are the coordinates of the node and medium in 
the given accompanying coordinate system; vjixj is the value of the velocity of the medium would have at the 
point where the node is located, if the node were absent; and vii is the macroscopic velocity gradient tensor. 

It, the extended freely articulated subchain there acts a contracting entropic force, equal in value [2] to 

F = (3krh)/(b~S), (2) 

where h is the distance between ends of the subchain; k is the Boltzmann constant; T is the absolute tem-  
pera ture ,  ~ and b is the segment length. 

Denoting by x~ (c~ = 1, 2, 3, 4) the coordinates  of nodes surrounding the given node, in accordance  with 
Eq. (2) for the elast ic  force  we have 

3kT ~ 12kT x 

The effective diffusion force occur r ing  because  of Prownian motion of the network nodes will be [5] 

f~ = - -  kT  (OlOxi) In W, (4) 

where  W is the density distribution function of the probabil i ty of finding a node at distance x f rom the origin 
pe r  unit volume. 

Neglecting inert ial  forces  (in view of the significant viscosi ty  of the media considered) we may wri te  
the condition for equilibrium of forces  acting on the node as 

/~+fi• , h ~ O .  (5) 

We then find the express ion for  mean node velocity, 

The condition for  continuity of density of probabil i ty of finding a node with mean velocity • has the 
form 

where  

OW/Ot + div (WU) = 0, 

U = ~-~(~x~ ~,j~ei+ f~ § f3). 

On the bas is  of Eqs. (6), (7) (considering that vii = 0) we wr i te  the kinetic equation 

OW/Ot + xivj~(OW/Ox~) = ( k T / ~ ) A W  + [t2kT/(Sb2r~)Jv(xW ). 

It may be seen that its s ta t ionary (0/0t  = 0) equilibrium ( vij = 0) solution, normal ized  to unity, will be 

(7) 

(s) 
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W0 = [t 2/(2~ Sb  ~ 13, '." exp [( - - t  2/Sb2)(xU2) ]. 

From this it follows that in the unperturbed state the value of the mean square deviation of a node from 
the coordinate origin will  be 

(x~'> o = 0.25SM. 

It will now be convenient to t r a n s f o r m  Eq. (8) to dimensionless  var iables ,  using ~/(1/3) (~x 2 )  0, a s  a r e -  
sult of which we obtain 

(9W/cgt + x~vj~((gWhgxi) = (1/• + V(xW)l, (9) 

where  

where  e i a re  bas i s  vectors .  
the re  a re  z nodes, we have 

• = [ S b V l 2 k T .  

TO calculate  the s t r e s s  terisor we define it as follows. Let 1 be the posit ive direction of the normal  
f rom an imaginary  plane, dividing some space into two subs"paces - p o s i t i v e  and negative. The force P (1) on 
a unit sur face  with which the posi t ive subspace acts  upon the negative is re la ted to the s t r e s s  t ensor  at the 
given point P j i :  

P(l) = Pi~liei, 

One node acts  on the solvent with force ~( x - x j v j i e i ) ,  and if in a unit volume 

e 0 ) =  f ,w( , ,x l ( -  (10) 
lx'~O 

where  - x l ,  multiplied by the unit a rea ,  is equal to the volume in which nodes may be found in the negative 
semispaee  such that the i r  mean position is located in the posi t ive semispace.  

In accordance  with Eq. (5), consider ing the s y m m e t r y  of the integrand for  the replacement  of x by - x ,  

Eq. (10) may be wri t ten as  

e .  - - p~ j ,  - (1 /2)  z ~ x j  ( /~ + /~) W d V .  (ii) 

Equation (Ii) takes into account hydrostatic pressure. Substituting Eqs. (3), (4) in Eq. (ii), after trans- 
formations we have 

Pj~ = --pSj~ + ( l / 2 ) z [ ( i 2 k T / S b 2 ) ( x j x i )  - - k T S j i  1, 

where  (xjx i) -= f xjxiWdV a re  moments  of the distribution function. Replacing x by a dimensionless  variable,  
we finally obtain 

e i~ '= - -p6 j ,  -7- (1/2)zk T( < x i x , >  --6y~). (12) 

The number  of nodes z p e r  unit volume can be re la ted  to the network model p a r a m e t e r  as follows: z 
Nn/2S,  where  n is the number  of segments  in a macromolecu le  and N is the number  of maeromoleeules  pe r  

unit v~)lume. 

Thus, the s t r e s s e d  state in the model chosen is cha rac te r i zed  by an anisotropy t ensor  ( < x j x i ) - 5 i j ) ,  
which goes to zero  at equilibrium. 

Multiplying Eq. (9) by xjx i and integrat ing over  all space, we find the equation for  the moments  of the 

distribution function: 

�9 ~x . . . . .  (2/• (13) (d /d t )<xjx~ = <x~xk x'~j , \ r ' k / ' h l  - -  

It has been cons idered  here  that 

as a:--  ~ IT ' -~  O, ;'u = O. 

From Eqs. (12), (13) it is evident t h a t x  is the s t r e s s  relaxation t ime af ter  terminat ion of deformation 

(Vkj = Vki = 0). 

For  the case  where  (d /d t )  (xjxi)  = 0, in accordance  with Eq. (13) we have 

P:~i = --p6~ + 0.5e• + <x~xk>vk~), 

where  r = 0.5zkT. 
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flow. 
AS an example of the employment of the relationships obtained, we will consider stationary Couette 
Using the matrix notation 

!!(x~xDii=_ M; liv~il ~ v = 0 ; iip~il=___ p, 
0 

in which for  a s ta t ionary  flow f rom Eqs. (12), (13) we have 

My + vrM = (2/• --  E) (14) 
p ' - - - - p ~ + ~ ( M - - E )  J, 

where  E is  the unit ma t r ix ;  v T is the t r a n s p o s e d  m a t r i x  v. Solving Eq. (14), we obtain 

Il i+0.5(zG)~ 0.5zG ![ 0.5(xG) ~ 0.5zG !![ 

 :ll0  0o 0o 
It hence follows that  T = 0.5e~G; P~l -P22 = 0.5~2G2. Calculation of the coeff icients  p roceed ing  G di rec t ly  in 
t e r m s  of m o l e c u l a r - k i n e t i c  p a r a m e t e r s  is not difficult. However,  the i r  dependence on the the rmodynamic  
s ta te  of the p o l y m e r - s o l v e n t  s y s t em  and, consequently,  in the genera l  ease ,  the i r  dependence on the inva r i -  
ants of the veloci ty  deformat ion  or  shea r  s t r e s s  t enso r  p e r m i t s  t he i r  de terminat ion  f rom exper iment .  Denot- 
ing the  v i scos i ty  by ~ = 0.5E~, for  one-d imens iona l  flow we have ~- = ~(G) G, Pit -P22  = r~tiG)G. The functions 
~7 (G) and,~(G) may  be wr i t t en  with rheologica l  re Ia t ionships  known beforehand for  some c lass  of media  ( for  
example ,  [6, 7]) o r  e s tab l i shed  f rom data of v i s c o m e t r i c  and rheogoniomet r i c  m e a s u r e m e n t s ,  respec t ive ly .  

To this  point the chain of the network model  has  been cons idered  f r ee ly  ar t icula ted .  We will now ex-  
pand the model  to the case  where  the chain r igidi ty is  considered.  Since in this ease  the mos t  p robab le  chain 
equi l ibr ium s ta te  does not change (only the chain deformat ion  veloci ty changes),  Eqs. (1), (3), and (4) r ema in  
in force .  

Following Serf  [2], we a s s u m e  that the in ternal  chain v i scos i ty  force  depends on the ra te  of change of 
i ts  length in the following manner :  

j~'~ = ~ (~h?/6t) ,  (1~) 

= c~ _ xi i s  the d i f ference  between the coordina tes  of the cha in ' s  beginning and end; y is a con- where hi xi 
stant; 5h~/St denotes that component of the rate of change h~ which is independent of rotation of the chain 
as a whole; the internal viscosity force is produced by braking of rotation. 

The operator 5/5t is quite complex, and thus we will limit ourselves to an approximate expression for 
5h~/St. In accordance with Eq. (5) we write the node velocity in the form 

d x j d t  = xjv~ ~ (kT/~)(d/dx~) In W --  (i2kT/~Sb'-)x~ = xivt~ - -  (kT/~)(a/Oxi) In (W/Wo).  (16) 

The equi l ibr ium distr ibut ion function W 0 depends only on x 2 , and W for  an a r b i t r a r y  flow depends on 
quadrat ic  f o r m s  of the tyPe xixi, xiv(ik) V(kj)Xj, xiv[ik] V[kj]X j . . . . .  and the i r  der iva t ives .  Here  v(ij) = 0.5 (vii + 

v i i ) ;  v[ij] = 0.5(vij  - v i i ) .  Clear ly ,  this  function mus t  be  such that  W -~ W0 for  v(ij) = v[ij] ~ 0. Expanding 

ln(W/W 0) in a s e r i e s  in these  quadrat ic  f o r m s  and re ta in ing  only t e r m s  not dependent on rotat ion,  in c o r r e -  
spondence with  the H a m i l t o n - K e l l e y  t h e o r e m  f r o m  Eq. (16) we obtain 

~x~/~t = Ax i  + Bx~ vuo + Cxiv(/~)v(h o + O(x3). 

The coeff icier~s A, B, C a r e  unknown functions of the bas i c  invar ian ts  of t en so r  v(ji). F o r  i n c o m p r e s -  
sible (vii = 0) plane (v(ik) V(kl)V(l  i) = 0) flows, in the second approximat ion  for  the de fo rma t ion - r a t e  gradient  
we m a y  wr i t e  

6xJ6t  .~. Box~vcm. 

In accordance  with Eq. (15) for  the node we have 

Consequently,  the chain in ternal  v i scos i ty  (rigidity) fo rce  act ing on a given node is  e x p r e s s e d  in the fo rm 

(17) 
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2 and 3 the t e r m  4 The s t r e s s  t enso r ,  cons ider ing  Eq. (17), m a y  be  obtained f rom Eq. (11), adding to f i  f i  fi" 
P e r f o r m i n g  ca lcula t ions  comple te ly  analogous to those  used  in der iv ing Eq. (12), we obtain 

pj~ = --pSj~ + e (<xjx~> --~ij~) + ~ •  <xjxk> ,~(~), (18) 

w h e r e  a = 47~ - t ,  and the value xj is  made  d imens ion less  with ~/Sb2/12. 

Since Eq. (17) has  s e c o n d - o r d e r  a c c u r a c y  in v i i ,  Eq. (18) should be  re l iab le  only to t e r m s  of second-  
o r d e r  s m a l l n e s s  in vji .  Expanding (XjXk) in a s e r i e s  in ve loc i ty  g rad ien t s  

<x~xk) = Co~k + Cx~'(ik) § 0(~'(m), 

we find that  

Pj~ = p55i + e ( (x i x i  > - -  6~i) + 0.5~e• [(xixk)v(ki ) + vik(XkXi)  ]. (19) 

Cons ider ing  the in te rna l  v i s cos i t y  fo rce  equation (17) in the express ion  for  node veloci ty ,  we have 

d x d d t  = ~-~[ ~xivj~ - -  (12kT/Sb~)x~ - -  k T(O/Oxi) 1,1W - -  4Vxiv(j~)]. (20) 

Substituting Eq. (20) in Eq. (7), we find 

OW/Ot  + x j  [vj~ - -  av(j~)l(OW/Ox~) = (1/• [AW + V (xW) ].  (21) 

F r o m  Eq. (21) we have 

d ( x ~ x ~ ) / d t  = ( x~x  i )  [ v ~ -  av(~ 0] + ( x ~ x i )  [v~j - -  ~xvr --  (2 / •  ~i~). (22) 

F o r  s t a t iona ry  Couette flow f r o m  Eq. (22) we find d i rec t ly  

<x~x.,.) = [2 + ( i  +$)p2]/[2(1 +~pp~)]; 

<x.,.x,.> = [2 T~(I '  +~)p:] / [2( l  ~-' ~,p-)" ~ ]; 
<z~> =l ;  <X~Xl> = (x..~) =0; 

<xo.x~) = [ ( t - - , ) p ] / [ 2 ( t  +~p)] ,  

whe re  

~p = cr - -  ~); p = • [t --  (cr 

T h e r e f o r e ,  omit t ing  t e r m s  h igher  than second o r d e r  in vji , we have 

pll = --P + 0.5e[t --(a/2)](• P~.2 = - - P  + 0.25ea(t --cr215 

P3~ = - - P ;  P21 = Pr,- = 0.5e• P~I -=- P13 = pc_3 = P3.,_ = O. 

In the absence  of in terna l  v i scos i ty ,  i .e . ,  ~ = 0, P22 --- - P .  

Consequently,  cons idera t ion  of in te rna l  v i scos i ty  leads  to appea rance  of a second di f ference  in no rma l  
s t r e s s e s :  

P_,2 --  P33 = 0.25ea(t --  a)(• 2 -: ~(G)G"-, 

which is  absen t  in the ne twork  model  wi th  f r e e ly  a r t i cu la t ed  chains.  

Thus,  the s t r e s s e d  s ta te  in the network model  chosen h e r e  m a y  be  c h a r a c t e r i z e d  by T, Pll - P22, P22 - 

P33. 

The n o r m a l  hydrodynamic  equations in s t r e s s e s  and continuity toge the r  with Eqs. (19), (22) and the 
functions 77(G), >r fl (G) es tab l i shed  h e r e  allow cons idera t ion  of the pecu l i a r i t i e s  of motion of concent ra ted  
p o l y m e r  solut ions and p e r f o r m a n c e  of concre te  calculat ions.  
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